On topological graphs with at most four crossings per edge

نویسنده

  • Eyal Ackerman
چکیده

We show that if a graph G with n ≥ 3 vertices can be drawn in the plane such that each of its edges is involved in at most four crossings, then G has at most 6n− 12 edges. This settles a conjecture of Pach, Radoičić, Tardos, and Tóth. As a corollary we also obtain a better bound for the Crossing Lemma which gives a lower bound for the minimum number of crossings in a drawing of a graph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On ρ-Constrained Upward Topological Book Embeddings

Giordano, Liotta and Whitesides [1] developed an algorithm that, given an embedded planar st-digraph and a topological numbering ρ of its vertices, computes in O(n) time a ρ-constrained upward topological book embedding with at most 2n−4 spine crossings per edge. The number of spine crossings per edge is asymptotically worst case optimal. In this poster, we present improved results with respect...

متن کامل

Structure of Graphs with Locally Restricted Crossings

We consider relations between the size, treewidth, and local crossing number (maximum number of crossings per edge) of graphs embedded on topological surfaces. We show that an n-vertex graph embedded on a surface of genus g with at most k crossings per edge has treewidth O( √ (g + 1)(k + 1)n) and layered treewidth O((g + 1)k) and that these bounds are tight up to a constant factor. In the speci...

متن کامل

Simultaneous Embeddings with Few Bends and Crossings

A simultaneous embedding with fixed edges (SEFE) of two planar graphs R and B is a pair of plane drawings of R and B that coincide when restricted to the common vertices and edges of R and B. We show that whenever R and B admit a SEFE, they also admit a SEFE in which every edge is a polygonal curve with few bends and every pair of edges has few crossings. Specifically: (1) if R and B are trees ...

متن کامل

Product of normal edge-transitive Cayley graphs

For two normal edge-transitive Cayley graphs on groups H and K which have no common direct factor and $gcd(|H/H^prime|,|Z(K)|)=1=gcd(|K/K^prime|,|Z(H)|)$, we consider four standard products of them and it is proved that only tensor product of factors can be normal edge-transitive.

متن کامل

Some results on vertex-edge Wiener polynomials and indices of graphs

The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1509.01932  شماره 

صفحات  -

تاریخ انتشار 2013